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CLOSED FORM VALUATION OF VULNERABLE EUROPEAN 

OPTIONS WITH STOCHASTIC CREDIT SPREADS 

Abstract. This paper develops a two-factor valuation model of vulnerable 

European options incorporating a stochastic credit spread, which is formulated as 

a mean-reverting Ornstein-Uhlenbeck stochastic process. Furthermore, we exploit 

Mellin transform techniques to derive a closed-form solution for vulnerable 

European options in Black-Scholes model. The formula is simply provided with 

standard normal cumulative distribution function so that the pricing and hedging 

of the options can be computed very accurately and rapidly. Numerical 

experiments demonstrate that how credit risks depends only on the prices of bonds 

that have been issued by the counterparty and rank equally with options affect the 

prices of European options. 

Keywords.  European options, Default risk, Credit spreads, Pricing, Mellin 

transform. 
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1. Introduction 

In recent years, the over-the-counter (OTC) options markets form a significant 

proportion of the financial markets. However, unlike the options traded in 

regulated exchanges, there is no organizing exchange in OTC markets requiring 

that options positions are marked to market on a daily basis and sufficient collateral 

posted. Hence, the option holder is always prone to counterparty credit risks 

because the option writer of the counterparty may not make the promised payments 

at the exercise date. Thus, the credit risk has to be put forward when pricing the 

OTC options. To measure credit risk, there are two basic frameworks: structural 

and reduced-form models. It is well-known that the structural approach for credit 

default risk proposed by Black & Scholes (1973) and Merton (1974). The structural 

approach is intuitive because it links default risk to the firm's economic 

fundamentals. In contrast to the structural approach, the reduced-form approach 

models a firm's default time by exogenously specifying a hazard rate or assumes 

that it is driven by a default intensity that is a function of latent state variables, 
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related literatures include those of Hull & White (1995), Jarrow& Turnbull (1995), 

Jarrow et al. (1997), Lee et al. (2017), and Wang (2018). Owing to its  

mathematical tractability, the reduced-form approach to modeling credit risk has 

become very popular among researchers and practitioners. 

Based on the default model of corporate bonds proposed by Merton (1974), 

Johnson & Stulz (1987)obtained a pricing formula under the assumption that the 

option holder would receive the total assets of the option writer in default at the 

expiration date and that the option could be treated as the only liability in the 

option writer's capital structure. However, the option being the option writer's only 

obligation in Johnson & Stulz (1987) model is inconsistent with real-world 

business situations, Hull & White (1995)allowed the counterparty to have other 

liabilities of equal priority, and they adopted the reduced-form approach to estimate 

the impact of default on bonds issued by the counterparty and ranking equally with 

the derivative security. In this paper, we follow and extend the work of Hull & 

White (1995) to price vulnerable European options, which is not only to allow the 

option writer to have bond liabilities of equal priority payment under the option but 

also credit spreads depend only on the price of bonds for reflecting default risk in 

the calculated price of OTC options is stochastic. In the reduced form framework, 

the credit events are considered to be governed by exogenous reason stochastically, 

see Duffie& Singleton (1999), Jarrow & Turnbull (1995), and Lando (1998). 

Longstaff& Schwartz (1995)pointed out that these dynamics imply that changes in 

credit spreads are mean-reverting and homoscedastic, which is consistent with the 

empirical data. Furthermore, these dynamics imply that credit spreads are positive 

and conditionally lognormally distributed. Therefore, following Longstaff& 

Schwartz (1995) and Rizal et al. (2018),we use stochastic model of Vasicek as an 

exogenous process to model credit risk spreads. 

Up to now, to find the analytic formula for the valuation of options, most of 

the previous literature has used mainly probabilistic techniques. However, the 

pricing of a given option with probabilistic approaches requires the complexity of 

the calculation. To solve this problem, the Mellin transform approach has been 

used to obtain the pricing formulas of the various options, we can refer to we can 

refer to Gzyl et al. (2017), Jeon et al. (2017), Jeon& Kim (2019), Kim & Koo 

(2016), LI & Rodrigo (2017), Panini &Srivastav (2004), and Yoon & Kim (2015). 

The Mellin transform is an integral transform, which is regarded as the 

multiplicative version of the two-sided Laplace transform. In particular, the Mellin 

transform approach exploits the properties of this transform to reduce the pricing 

PDE into an ODE that can be solved easily. The option price is then recovered by 

the convolution property. Therefore, this method will help us to obtain the analytic 

integral formula of vulnerable European options with stochastic credit spreads 

more easily and effectively. 

The rest of the paper proceeds as follows. Section 2 derives a closed-form 

formula for vulnerable European option by employing Mellin transform techniques. 

Numerical examples are shown in Section 3. Section 4 concludes. 
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2.Model formulation 

In this section, we investigate the price of vulnerable European option with 

stochastic credit spreads. By using Mellin transform, we derive an explicit closed-

form solution. 

2.1 Modeling assumptions 

As in Hull &White (1995), we need the following notation: 

P  = current price of vulnerable European option under consideration, 
*P = current price of European option assuming no defaults, 

r = the short term risk-free interest rate, 

 = the proportional recovery made in the event of default, 

 =denote vector of state variables determining the 
*P and r variables, 

 =denote vector of state variables determining the occurrence defaults and , 

 Then the current price of vulnerable European put option is written as 

  *

,
ˆ exp ,

T

b T
t

P E rds P    
  

                                

(1) 

where the expectations operator E is taken over all paths for  and  between 

times t and T , b denote the first payoff boundary point crossed by the path. Since 

r is defined by   variables, equation (1) can be written 

   *ˆ ˆexp .
T

b T
t

P E rds E P  
  

                              (2) 

Defining 

   ˆ, .bT E
 

                                                        (3) 

Suppose the state variables comprising   are independent of the state 

variables comprising , then equation (3) becomes 

   ˆ, .bT E                                                           (4) 

The function  ,T  is independent of   can be written as  T , Equation 

(2) becomes 

    *ˆ exp .
T

T
t

P T E rds P   
                                      (5) 

When there is no possibility of defaults, then the price of vulnerable European 

option can be written 

 * *ˆ exp .
T

T
t

P E rds P
  
                                                 (6) 

with payoff function g is given by 

    .T Tg S K S


                                                              (7) 
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Let B  and 
*B  denote current value of a vulnerable zero-coupon bond issued 

by the option writer that pays off $1 at time t to maturity T  and ranks equally with 

the option in the event of a default and default-free zero-coupon bond, respectively. 

Then, similarly for the value of zero-coupon bond is given 

   ˆ exp .
T

t
B T E rds   

                                             (8) 

Also 

 * ˆ exp .
T

t
B E rds

  
                                                       (9) 

From (5), (6), (8) and (9), we get 

  * *

*
.

B
P T P P

B
                                                             (10) 

Defining y and 
*y  (equals r ) as the yields on B and

*B , respectively. 

Because
log B

y
T t





, then equation (10) becomes 

   * *exp .P y y T t P                                               (11) 

Then, the no-arbitrage price of a vulnerable European put option under the 

martingale measure is written by 

     *ˆ exp ,TP E y y T t g S
    
 

                          (12) 

where
' *y y y   represents credit spreads between B and

*B , S  is current price 

of the stock, K is the strike price of the option. Then equation (12) is considered as 

a discount function for  Tg S . 

We suppose that the risk-neutral process for S and 
'y satisfied following 

stochastic differential equations (in short, SDE) 

,s sdS rSdt SdW                                                           (13) 

  ' '

' ' ,
y y

dy y dt dW                                                  (14) 

where 
'y is the credit spread rate,  is the mean credit spread rate in long term, 

is the coefficient of the reversion speed of credit spread rate towards its long-run 

mean  , 
s is the volatility of the underlying asset, 'y

 is the credit spread 

volatility. The Wiener process 
sdW  and 'y

dW are independent with ' 0s y
dW dW  . 

The price of vulnerable European option is  ', , ,P t S y T . By applying 

Feynman-Kac theorem, the partial differential equation (PDE) governing the option 

value is 
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   '

2 2
2 2 ' '

2 '2 '

1 1
,

2 2
s y

P P P P P
S rS y y r P

t t y S y
   

    
      

    
     (15)  

with the terminal condition    ', , , TP t S y T g S . 

2.2Vulnerable option price formula 

The objective of this subsection is to derive a vulnerable European option 

pricing formula by solving (15) through the Mellin transform method. Therefore, 

we first summarize the definition and some basic properties of without proof for 

readers who are unfamiliar with the Mellin transforms. The interested reader can 

refer to Erdelyi et al.(1954) and Sneddon(1972) as well. 

Definition 2.1(The Mellin transform and inverse Mellin transform). The 

Mellin transform  ĝ s   of a complex-valued function  g x defined over positive 

reals is 

      1

0
ˆ; : ,xM g x s g s g x x dx


                                        (16) 

with s  being a complex number. Then the function  g x  can be recovered from 

its Mellin transform by the inverse Mellin transformation formula 

     1 1
ˆ ˆ ,

2

c i
s

x
c i

g x M g s g s x ds
i

 
 

 
                                    (17) 

where c  is any real number. 

Proposition 2.1(Convolution of the Mellin transform) Let  f x  and  g x

be locally integrable functions on positive reals.  f̂ s and  ĝ s  are two Mellin 

transforms of the functions  f x  and  g x , respectively. Then, the Mellin 

convolution is given by the inverse Mellin transform of    ˆ ˆf s g s as follows: 

       

 
0

1 ˆ ˆ:
2

1
.

c i
s

c i
f x g x f s g s x ds

i

x
f g d



 
 

 


 



 

 
  

 





                                 (18) 

Proposition 2.2 (Inverse Mellin transform of exponential function) Given 

complex numbers   and   with 

 Re 0  , let    
1 ˆ

2

c i
s

c i
f x f s x ds

i

 


 
  , where    

2

ˆ s
f s e

 
       (19) 

Then 

 
 

2
ln

4
1

2

x

f x x e 





                                                               (20) 

holds. 
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Proposition 2.3. (Basic properties of the Mellin transform). Suppose that 

there exists a Mellin transform of  f x . Then the following relations hold: 

  ˆ; : ( ),xM x f x s sf s
x

 
   

                                                 (21) 

   
2

2

2
ˆ; : 1 ( ).xM x f x s s s f s

x

 
  

 
                                     (22) 

Then, by using Proposition 2.3, the Mellin transform of equation (15) yields 

 '

2
2 2 2 ' 2 '

'2 '

ˆ ˆ ˆ1 1 1ˆ 0,
2 2 2

s s y

P P P
r r y P y

y y
      



     
               

(23) 

with T t   ,    'ˆ ˆ0, ,P y g   which is the Mellin transform of  g S  

To simplify (23), we let 

     ' 2 '1 ˆˆ , , exp 1 , , ,
2 s

P y f y       
 

  
 

                         (24) 

then equation (23) is transformed into the following PDE for f̂  

   '

2
' 2 '

'2 '

ˆ ˆ ˆ1ˆ1 0,
2 y

f f f
r y f y

y y
   



  
           

          (25) 

with    'ˆ ˆ0, ,f y g  . 

To solve (25), we let      
    '1'ˆ ˆ, , ,

r y F
f y g G e

 
    

  
 with terminal 

condition    'ˆ ˆ0, ,f y g  . By substituting this function form into (25), we get 

the following ODEs with respect to  ,G    and  F   

  '

2 21
1 0,

2

1 0,

y

G
F G r FG

F
F

   






     


   

 

                              (26) 

where  0, 1G    and  0 0F  . By solving ODEs (26), we have 

           

 

'

2

2

2
, exp 1 ,

2 2

1
,

y
G F F r F

e
F



 
        








  
          

   
 

 
 


 

Then, by substituting  ,G   ,  F   and  'ˆ , ,f y   into (24), we have 
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      ' 'ˆˆ ˆ, , exp , , ,P y g Q y                                                     (27) 

where 

            

     
'

' 2 '

2

2

2

1ˆ , , 1 1 ,
2

.
2 2

s

y

Q y D r F y F

D F F

            

 
   



       

 
   

 

 

Hence, the price of vulnerable European put option is given 

      ' '1 ˆˆ, , exp , , .
2

c i

c i
P S y g Q y S d

i

    


 


 
                      (28) 

Let 

    

   
   

 

*

' '

2

1 ˆ, , exp , ,
2

1
exp ,

2 2

c i

c i

c iM

c i

S y Q y S d
i

E M
e E S d

i E



 

    


 
  

 

 


 

 


 



   
    

   




       

(29) 

where 

 

 

        
    

 

2

2

* '

1
,

2

,

.
4

sE

M r

E M
M D F y F r

E

  

 

 
      





 


     

 

Because   0E    holds for 0  , by using Proposition 2.2, we obtain 

 
 

   

   
 

 

2

2' *
ln1

, , exp ,
42

E M

E S
S y S M

EE

 


  

 


   

  
                 

(30) 

Since  ĝ   and   'ˆexp , ,Q y   are the Mellin transform of  g S  and

 ', ,S y  , respectively. Using Proposition 2.1, we have the following result 

   

 

' ' 1

0

' 1

0

, , ,

,
K

S
P S y g u y u du

u

S
K u y u du

u

 








 
  

 

 
   

 





                     (31) 

Setting 
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 
 

   

 

   
 

 

2

1

2

*

2

1
,

2

ln
.

4

E M

ES
u

uE

S
u M

E

 




 

 





 
  

 

 

 

Then equation (30) yields 

       
       ' 1

1 2
0

, , exp .
K

P S y u K u u u du                     
(32) 

Now we give a closed-form formula for vulnerable European put option price. 

Theorem 2.1For the value of a vulnerable European put option, defined by 

(12) can be expressed as the following pricing formula: 

       ' '

2 1, , , ,rP S y R y e KN d SN d                             (33) 

where N  is the standard normal cumulative distribution as 

 
21

2
1

,
2

x s

N x e ds





   

and 

      

      
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To evaluate the first term in (34), we introduce an auxiliary function 
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Then the exponent of the integrand of (35) can be expressed as 
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Similarly, to evaluate the second term in (34), we introduce an auxiliary 

function 



 

 

 

 

 

 

Zong-Gang Ma, Shi-Song Xiao 

_________________________________________________________ 

302 

 

DOI: 10.24818/18423264/53.4.19.18 

 

 
 

   

 
  

ln

2 *2
2

1
exp

2 22

S

K

E
E MS

I x x M dx
E


 




 
 
 



  
      

 
        (36) 

Then the exponent of the integrand of  (36)  can be expressed as 
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Remark 2.1If there is no credit risk(i.e.,  ' , 1R y   ), that is, * rB B e   , 

then (33)  reduces to 
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which is exactly the Black-Scholes's pricing formula for European put options. 

Remark 2.2   If we assume that credit risk is measured by constant credit 

spread (i.e.,    '
' ,

y r
R y e




 
 ), then, (33) becomes the pricing formula in Hull & 
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The proposed model formula (33) is also in the form of Hull & White (1995) 

(similar to the Black-Scholes type options formula). However, its component is 

different, because the credit risk depends only on the prices of bonds that have 

been issued by the counterparty and rank equally with European options is 

expressed by       ' ', expR y A y F    . But, in the Hull and White model, 

the credit risk is measured by
 *y y

e
 

. 

Theorem 2.2 For vulnerable European call option pricing formula is given by 
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1 2, , , ,rC S y R y SN d e KN d                           (40) 

where
1d ,

2d and  ' ,R y   are defined by the theorem 2.1. 

3.Numerical Experiments 

In this section, we give the sensitivity analysis in order to explore the impact 

of different parameters on option prices, when the credit risk depends only on the 

prices of bonds that have been issued by the counterparty and rank equally with 

options. Given a vulnerable European put option, we use the following value of the 

parameters whenever they are required to be specified throughout the numerical 

analysis unless indicated otherwise: 
'

0 01, 1, 0.04, 0.05,S K y r    

0.25,s  ' 0.15,
y

  0.12, 0.08   . 

Table 1 compares the option prices given by our proposed model to those in 

Black & Scholes (1973) and Hull & White (1995) for various choices of the 

underlying asset volatility, the credit spread volatility, speed of adjustment, and 
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long-run mean. The options pries in the proposed model (P), the Black and Scholes 

model (BS) and the Hull and White model (HW) are computed by (33), (38) and 

(39), respectively. For further comparison of P with BS and HW, we compute the 

percentage difference 
100( )

%
P BS

BS


  or
 100

%
P HW

HW


  . Four 

points are noteworthy from Table 1. First, the option prices in the BS model are 

higher than those in the proposed model and the HW model due to the default risk 

from the counterparty. Second, increasing the underlying asset volatility increases 

the value of European put options, no matter which model is applied. This is 

because a higher volatility of the underlying asset causing a higher premium of the 

option. In addition, we can understand the effect of 'y
  in the same way. Such a 

phenomenon is observed clearly in Figure 2 and figure 3.Third, when the long-run 

mean ( ) is close to the initial level of credit spread (
'

0 0.04y  ), our proposed 

model and the Hull and White model prices are not significantly different. As
deviates from the initial credit spread value, the difference in prices between the 

proposed model and the Hull and White model increases. On the one hand, if   is 

higher than
'

0 0.04y  , then the Hull and White model drastically overprices the 

option. This is because, with use of the Hull and White model, credit spread is 

assumed to remain constant at its initial value. Since the option price is decreasing 

function of the credit spread rate, keeping the credit spread rate at a lower level 

leads to a higher option price. However, in the proposed model, the credit spread 

rate increases towards   during the life of the contract and the option price is 

lower than when credit spread had been kept at the lower initial level. On the other 

hand, if   is lower than
'

0 0.04y  , the opposite conclusion is reached. Fourth, as 

the speed of adjustment ( ) increases, the difference in prices between the 

proposed model and the Hull and White model increases. This is because with a 

high speed of adjustment( ), credit spread returns to its long-run level faster, but 

in the Hull and White model, credit spread is kept at a higher level through the 

entire life of the option contract. Therefore, the higher , the higher is our 

proposed model price and the greater is difference in prices between our proposed 

model and the Hull and White model. 
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Table 1 Values of vulnerable and European put options 

  Parameter Values  Option  Prices Price 

Difference 

Between BS and  
P 

Price 

Difference 

Between BS and  
P 

 
s  'y

      BS HW P 100%
BS

   100%
HW

   

In-the 0.25 0.15 0.12 0.02 0.1826 0.1755 0.1299 -28.8700 -25.9671 

money 
options 

0.30 0.15 0.12 0.02 0.1968 0.1890 0.1400 -28.8700 -25.9671 

0 0.8S   0.50 0.15 0.12 0.02 0.2585 0.2484 0.1839 -28.8700 -25.9671 

 0.25 0.20 0.12 0.02 0.1826 0.1755 0.1027 -43.7523 -41.4568 

 0.25 0.25 0.12 0.02 0.1826 0.1755 0.0760 -58.4062 -56.7088 

 0.25 0.25 1.15 0.02 0.1826 0.1755 0.1779 -2.61210 1.3624 

 0.25 0.25 3.20 0.02 0.1826 0.1755 0.1783 -2.37100 1.6133 

 0.25 0.25 3.20 0.03 0.1826 0.1755 0.1771 -3.0522 0.9043 

 0.25 0.25 3.20 0.04 0.1826 0.1755 0.1758 -3.7287 0.2002 

 0.25 0.25 3.20 0.05 0.1826 0.1755 0.1746 -4.4005 -0.4990 

 0.25 0.25 3.20 0.08 0.1826 0.1755 0.1710 -6.38780 -2.5674 

 0.25 0.25 3.20 0.10 0.1826 0.1755 0.1686 -7.6897 -3.9224 
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At-the- 0.25 0.15 0.12 0.01 0.0746 0.0717 0.0531 -28.8290 -25.9244 

money 

options 

0.15 0.15 0.12 0.01 0.0371 0.0357 0.0264 -28.8290  -25.9244 

0 1S   0.10 0.15 0.12 0.01 0.0193 0.0185 0.0137 -28.8290  -25.9244 

 0.10 0.20 0.12 0.01 0.0193 0.0185 0.0109 -43.7199 -41.4230 

 0.10 0.30 0.12 0.01 0.0193 0.0185 0.0055 -71.2211 -70.0466 

 0.10 0.30 2.20 0.01 0.0193 0.0185 0.0189 -1.7196 2.2913 

 0.10 0.30 3.30 0.01 0.0193 0.0185 0.0190 -1.5878 2.4285 

 0.10 0.30 3.30 0.03 0.0193 0.0185 0.0187 -2.9718 0.9880 

 0.10 0.30 3.30 0.04 0.0193 0.0185 0.0186 -3.6565 0.2754 

 0.10 0.30 3.30 0.05 0.0193 0.0185 0.0184 -4.3363 -0.4322 

 0.10 0.30 3.30 0.08 0.0193 0.0185 0.0181 -6.3472 -2.5251 

 0.10 0.30 3.30 0.10 0.0193 0.0185 0.0178 -7.6642 -3.8959 

Out-of-the 0.20 0.15 2.20 0.01 0.0129 0.0124 0.0127 -2.0713 1.9253 

money 

options 

0.25 0.15 2.20 0.01 0.0253 0.0243 0.0248 -2.0713 1.9253 

0 1.2S   0.30 0.15 2.20 0.01 0.0400 0.0385 0.0392 -2.0713 1.9253 

 0.30 0.50 2.20 0.01 0.0400 0.0385 0.0397 -0.8808 3.1643 
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 0.30 0.60 2.20 0.01 0.0400 0.0385 0.0399 -0.3000 3.7688 

 0.20 0.15 1.15 0.01 0.0129 0.0124 0.0126 -2.5545 1.4223 

 0.20 0.15 0.12 0.01 0.0129 0.0124 0.0092 -28.8290 -25.9244 

 0.20 0.15 2.20 0.03 0.0129 0.0124 0.0125 -3.2313 0.7179 

 0.20 0.15 2.20 0.04 0.0129 0.0124 0.0124 -3.8062 0.1196 

 0.20 0.15 2.20 0.05 0.0129 0.0124 0.0124 -4.3776 -0.4752 

 0.20 0.15 2.20 0.08 0.0129 0.0124 0.0121 -6.0716 -2.2383 

 0.20 0.15 2.20 0.10 0.0129 0.0124 0.0120 -7.1843 -3.3964 

Note: BS=the Black and Scholes price, HW= the Hull and White price, and P=the proposed model price from (33)
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Figure 1: European put option prices with different
0S varying . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: European put option prices with different time to maturity  varying
s .

 

Figure 1 plots European put option prices against time to maturity   for three 

different scenarios namely 
0 01, 1.1S S   and

0 1.2S  . One can observe that 

European put option prices increase with an increase in the time to maturity no 

matter what the asset price is chosen. This agrees with the fact that option prices 

are increasing function of time to maturity. Also, the option prices are higher when 

there is no risk of default by the counterparty as compared to the cases with the risk 

of default. From Figure 1, we also can observe that a higher underlying asset price  
leads to lower European put option price. Furthermore, we analyze the sensitivity 
of vulnerable European option prices with respect to changes in the parameters that 
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come into play due to the volatility of underlying asset and credit spread. Figure 2 
and Figure 3 illustrate the sensitivity of European put option with respect to the 
volatility of the underlying asset and the volatility of credit spread for different 
time to maturity, 1.0,1.2,1.8  . Figure 2 shows that with the high values of the 
underlying asset price volatility 

s  can lead to a higher vulnerable price.  Figure 3 
displays the same case with respect to the credit spread volatility in the proposed 
model. We can observe that the high credit spread volatility can lead to a higher 
option price. Figure 4 demonstrates that the option prices decrease as the initial 
credit spread value 

'

0y  increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:European put prices with different time to maturity  varying 'y
 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:European put prices with different time to maturity  varying
'

0y . 
 

4.Conclusions 

This paper extends the vulnerable European option pricing results of to allow 
not only for other liabilities in the capital structure of the option writer but also for 
credit spread is stochastic. Specially, we derive the closed-formed pricing formulas 
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of vulnerable European options by applying the Mellin transforms techniques. We 
also provided the table and graphs to illustrate the significant movements of the 
prices with respect to parameters of option. The analysis here suggests that a 
constant credit spread model can lead to significantly different options prices 
relative to those obtained by a stochastic credit spread. Variables important in 
determine vulnerable options prices are the initial level of credit spread, the speed 
of adjustment of credit spread, the long-run mean rate, and the time to maturity. 
There does not appear to be a significant difference between the proposed model 
and the HW model when the initial credit spread rate is close to long-run mean rate
 ). In addition, the proposed formula predicts lower option prices than those 
predicted by the Black and Scholes formula for in-the-money, at-the-money 
options and out-of-the-money. However, the proposed formula predicts higher 
option prices than those predicted by the Hull and White formula when the initial 
credit spread rate is less than long-run mean rate, otherwise, the opposite 
conclusion is reached. In conclude, our results suggest that the incorporation of a 
stochastic credit spread is extremely important when valuing vulnerable European 
options, particularly when the credit risk depends only on the prices of bonds that 
have been issued by the counterparty and rank equally with European options. 
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